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Abstract In this paper, the perturbations of the Moore–Penrose metric generalized inverses of linear

operators in Banach spaces are described. The Moore–Penrose metric generalized inverse is homo-

geneous and nonlinear in general, and the proofs of our results are different from linear generalized

inverses. By using the quasi-additivity of Moore–Penrose metric generalized inverse and the theorem

of generalized orthogonal decomposition, we show some error estimates of perturbations for the single-

valued Moore–Penrose metric generalized inverses of bounded linear operators. Furthermore, by means

of the continuity of the metric projection operator and the quasi-additivity of Moore–Penrose metric

generalized inverse, an expression for Moore–Penrose metric generalized inverse is given.
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1 Introduction

The concept of generalized inverses has been extensively studied in the last decades, which has
its genetic in the context of the so-called “ill-posed” linear problems. There has been a great
deal of interest in the theory and applications of generalized inverses (see [3, 11–14, 18], etc.),
however, linearly generalized inverses are not suitable to construct the extremal solutions, the
minimal norm solutions, and the best approximation solutions of an ill-posed linear operator
equations in Banach spaces [15]. In order to solve the best approximation problems for ill-
posed linear operator equations in Banach spaces, it is necessary to study the metric generalized
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inverses of linear operators between Banach spaces. This kind of generalized inverses, which are
set-valued bounded homogeneous operators, was introduced by Nashed and Votruba in 1974
in [15]. Moreover, in 2003, H. Wang and Y. W. Wang introduced the notion of Moore–Penrose
metric generalized inverses of linear operators between Banach spaces [22], which are not only
generalized inverses but also bounded homogeneous and nonlinear (in general) operators.

Throughout this paper, perturbation theory means the perturbation theory for linear oper-
ators, which was created by Rayleigh and Schrödinger [9], and it occupies an important place in
applied mathematics. In the last years the group of mathematicians working in the perturba-
tion theory, involved several directions in analytical dynamics and nonlinear oscillation theory.
During the last decades it has grown into a mathematical discipline with its own interests and
techniques. There is a wide literature of the results towards the perturbation for linear opera-
tors, especially linear generalized inverses [4, 7, 21, 23–25], etc. Although the perturbation of
linear generalized inverses of operators have been widely studied, and numerous results were
obtained, the problems of nonlinear generalized inverses remaind unsolved except some initiated
study in [10, 17].

In 1997, Chen and Xue extended some results in the perturbation analysis of bounded
linear operators in Banach spaces to a more general situation (see [4]). By using this result,
they give some results of perturbation analysis for the operator equation Tx = b through
linearly generalized inverse T+ (see [4]). In 2006, some descriptions concerning the solution
of the equality Tx = b through the Moore–Penrose metric generalized inverse were obtained
in [10] by us. The starting point and initial motivation for [10] was the result of [4].

In Section 3, the perturbations of Moore–Penrose metric generalized inverses for operators
between Banach spaces will be further studied. By using the generalized orthogonal decom-
position theorem (Theorem 2.6) and the quasi-additivity of Moore–Penrose metric generalized
inverses (Theorem 3.1), we obtain a description of Moore–Penrose single-valued metric gener-
alized inverses of operators on Banach spaces.

2 Preliminaries

Throughout this paper, let X and Y be two real Banach spaces, B(X, Y ) be the space of
all bounded linear operators from X to Y , H(X, Y ) be the space of all bounded homogenous
operators from X to Y , H(X, X) := H(X), and L(X) be the space of all linear operators from
X to X. Denote by D(T ), R (T ) and N (T ) the domain, the range and the null space of T ,
respectively. Let L be a subspace of X, L⊥ := {x∗ ∈ X∗ : 〈x∗, x〉 = 0, x ∈ L}.
Definition 2.1 ([2]) Let X∗ be the dual space of X. The set-valued mapping FX : X → 2X∗

defined by

FX (x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2, x ∈ X}

is called the duality mapping of X, where 〈x∗, x〉 denotes the value of x∗ at the point x.

Definition 2.2 ([6]) If K ⊂ X, the set-valued mapping PK : X → K defined by

PK(x) =
{

y ∈ K : ‖x − y‖ = inf
y∈K

‖x − y‖
}

, x ∈ X,

is called the metric projection.
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The kernel of the metric projection PK onto a proximinal subspace K is the set

kerPK := {x ∈ X : 0 ∈ PK(x)} =
{

x ∈ X|‖x‖ = inf
y∈K

‖x − y‖
}

.

Remark 2.3 ([18]) If K ⊂ X, then K is said to be proximinal if PK(x) �= ∅ for any x ∈ X.
K is said to be semi-Chebyshev if PK(x) is at most a single point set for each x ∈ X. K is
called a Chebyshev set if it is both proximinal and semi-Chebyshev. When K is a Chebyshev
set, we will denote PK(x) by πK(x), furthermore, πK(x) satisfies

(1) π2
K(x) = πK(x), ∀x ∈ X;

(2) πK(λx) = λπK(x), ∀x ∈ X, λ ∈ R;
(3) πK(x + y) = πK(x) + y, ∀x ∈ X, y ∈ K;
(4) ‖πK(x)‖ ≤ 2‖x‖.

Definition 2.4 ([1]) Let U and V be linear spaces, and S ⊂ U be a subset of U . A mapping
T : U → V is called quasi-additivity on S, if T satisfies

T (x + y) = T (x) + T (y), x ∈ U, y ∈ S.

Definition 2.5 ([22]) Let T : D(T ) ⊂ X → Y be a Linear operator, N(T ) and R(T ) be
Chebyshev subspaces of X and Y , respectively. If there exists a homogeneous operator TM :
D(TM ) → D(T ) such that

(1) TTMT = T on D(T );
(2) TMTTM = TM on D(TM );
(3) TMT = ID(T ) − πN(T ) on D(T );
(4) TTM = πR(T ) on D(TM ),

then TM is called the Moore–Penrose metric generalized inverse of T , where ID(T ) is the identity
operator on D(T ), D(TM ) = R(T ) � F−1

Y (R(T )⊥) and FY is the dual mapping of Y .

Theorem 2.6 ([20] Generalized orthogonal decomposition theorem) Let L be a proximinal
subspace of X. Then for any x ∈ X, we have the decomposition

x = x1 + x2,

where x1 ∈ L and x2 ∈ F−1
X

(
L⊥)

. In this case we have X = L+F−1
X (L⊥). If L is a Chebyshev

subspace of X, then the decomposition is unique and

x = PL(x) + x2, x2 ∈ F−1
X (L⊥).

In this case we have X = PL(x) � F−1
X (L⊥), where PL(x) = {πLx}.

Lemma 2.7 ([6]) Let K be a proximinal subspace of the normed linear space E. Then kerPK

is a subspace if and only if K is Chebyshev and PK is linear.

Lemma 2.8 ([19]) If T ∈ H(X, Y ), the addition and the scalar multiplication are defined as
usual in linear structures. If the norm of T is defined as

‖T‖ = sup
‖x‖=1

‖Tx‖, T ∈ H(X, Y ), (2.1)

then (H(X, Y ), ‖ · ‖) is a Banach space.

Definition 2.9 ([8]) A nonempty subset C of X is said to be approximately compact, if for any
sequence {xn} in C and any y ∈ X such that ||xn − y|| → dist (y, C) := inf {||y − z|| : z ∈ C} ,
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we have that {xn} has a Cauchy subsequence. X is called approximately compact if any
nonempty closed and convex subset of X is approximately compact.

Lemma 2.10 ([5]) Let C be a semi-Chebyshev closed subset of X. If C is approximatively
compact, then C is a Chebyshev subset of X, and the metric projector πC is continuous.

Lemma 2.11 Let T : D(T ) ⊂ X → Y be a Linear operator. If T has a Moore–Penrose metric
generalized inverse TM , then

(1) TM is unique on D(TM ), and TMy = (T |C(T ))−1πR(T )y when y ∈ D(TM ), where
D(TM ) = R(T ) � F−1

Y (R(T )⊥), C(T ) = D(T ) ∩ F−1
X (N(T )⊥);

(2) there exists a linear inner inverse T− from R(T ) to D(T ) (i.e., TT−T = T ) such that

TMy = (ID(T ) − πN(T ))T
−πR(T )y (2.2)

for y ∈ D(TM ).

Remark 2.12 This result has been obtained in [22] by H. Wang and Y. W. Wang under
the assumption that the underlying Banach space X and Y are strictly convex, but it is easy
to show that the result remains valid under the weaker assumption that N(T ) and R(T ) are
Chebyshev subspaces of X and Y , respectively.

Theorem 2.13 ([16, 18]) Let T ∈ B(X, Y ), N(T ) and R(T ) be Chebyshev subspaces of X

and Y , respectively. Then there exists a unique Moore–Penrose metric generalized inverse TM

of T such that
TM (y) = (T |C(T ))−1πR(T )(y)

for any y ∈ D(TM ), where D(TM ) = R(T ) � F−1
Y (R(T )⊥), C(T ) = D(T ) ∩ F−1

X (N(T )⊥).

Remark 2.14 In Theorem 2.13, if πR(T ) and (T |C(T ))−1 are all bounded homogenous oper-
ators, then TM is also bounded homogenous operator. Thus, the norm of TM is well defined
by (2.1) in Lemma 2.8.

In 2006, the following perturbation result about the solution of the equality Tx = b through
the theory of Moore–Penrose metric generalized inverse is given in [10].

Theorem 2.15 ([10]) Let T and δT ∈ B(X, Y ), N(T ) and R(T ) be Chebyshev subspaces of
X and Y , respectively. If T = T + δT , b ∈ R(T ) and b �= 0, then for every x ∈ S(T , b), we have

‖T‖−1‖δTx‖ ≤ dist(x, S(T, b)) ≤ ‖TM‖‖δT‖‖x‖,
where S(T, b) = {x ∈ X : Tx = b }, S(T, b) = {x ∈ X : Tx = b}.

When T has linearly generalized inverse T+, Theorem 2.15 is Lemma 4.1 of [4].

3 Main Results

In general, the metric generalized inverse of operator is a bounded homogeneous nonlinear
operator, which suggests that the discussion will be different from the perturbation of linear
generalized inverse. At first, we discuss the quasi-additivity of TM .

Theorem 3.1 Let T ∈ B(X, Y ). If N(T ) is a proximinal subspace of X, R(T ) is a Chebyshev
subspace of Y and kerPN(T ) is a subspace of X, then

(1) there exists a unique Moore–Penrose metric generalized inverse TM of T , and

TMy = (ID(T ) − πN(T ))T−πR(T )y, ∀y ∈ Y, (3.1)
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where T− is a linear inner inverses of T ;
(2) TM is quasi-additive (i.e, TM is quasi-additive on R(T )),

TM (x + y) = TMx + TMy

for all x ∈ Y, y ∈ R(T ).

Proof (1) Since N(T ) is a proximinal subspace of X and kerPN(T ) is a subspace of X, it
follows from Lemma 2.7 that N(T ) is a Chebyshev subspaces of X. Since N(T ) and R(T ) are
Chebyshev subspaces of X and Y , respectively, by Lemma 2.11 and Theorem 2.13, there exists
a unique Moore–Penrose meric generalized inverse TM of T such that

TMy = (ID(T ) − πN(T ))T−πR(T )y, ∀y ∈ D(TM ),

where D(TM ) = R(T ) � F−1
Y (R(T )⊥), and T− is a linear inner inverses of T . Since R(T ) is a

Chebyshev subspace of Y , then D(TM ) = Y by Theorem 2.6. Therefore, (3.1) is valid.
(2) Noticing that N(T ) is a proximinal subspace of X and kerPN(T ) is a linear subspace of

X, Lemma 2.7 implies that πN(T ) is a linear operator. Thus ID(T ) −πN(T ) is a linear operator.
By Lemma 2.11, there exists a linear inner inverse T− of T . Moreover, πR(T ) = πR(T ) is
bounded quasi-linear (quasi-additive) homogeneous metric projector, which shows that TM is
a bounded homogeneous operator. Thus for each x ∈ Y, y ∈ R(T ), we have

TM (x + y) = (ID(T ) − πN(T ))T−πR(T )(x + y)

= (ID(T ) − πN(T ))T−[πR(T )x + y]

= (ID(T ) − πN(T ))T−πR(T )x + (ID(T ) − πN(T ))T−y

= TMx + (ID(T ) − πN(T ))T−y

= TMx + TMy,

which finishes the proof. �

Corollary 3.2 Let T ∈ B(X, Y ) and δT ∈ B(X, Y ). N(T ) is a proximinal subspace of
X, R(T ) is a Chebyshev subspace of Y . If we assume that kerPN(T ) is a subspace of X and
R(δT ) ⊂ R(T ), then TMδT is a linear operator.

Proof By Theorem 3.1, there exists a unique Moore–Penrose metric generalized inverse TM

of T such that
TMy = (ID(T ) − πN(T ))T−πR(T )y, ∀y ∈ Y.

By R(δT ) ⊂ R(T ), it is easy to see that

TMδT = (ID(T ) − πN(T ))T−πR(T ) δT = (ID(T ) − πN(T ))T−δT.

Therefore, TMδT is also a linear operator because (ID(T ) − πN(T ))T−δT is a linear operator.
The proof is complete. �

In order to prove Theorem 3.5, we need the following results.

Lemma 3.3 Let T ∈ H(X). If T is quasi-additive on R(T ) and ‖T‖ < 1, then the operator
(I − T )−1 exists and

(1) (I − T )−1 ∈ H(X);
(2) (I − T )−1 =

∑∞
k=0 T k;
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(3) ‖(I − T )−1‖ ≤ 1
1−‖T‖ ;

(4) ‖(I − T )−1 − I‖ ≤ ‖T‖
1−‖T‖ .

Proof Let An =
∑n

k=0 T k for all nonnegative integers n. Then An are bounded homogenous
operators. For all n > m, we have

‖An − Am‖ =
∥∥∥∥

n∑
k=m

T k

∥∥∥∥ ≤
n∑

k=m

‖T‖k → 0

as m, n → ∞. By the completeness of H(X), there exists a unique operator A ∈ H(X) such
that

A = lim
n→∞ An =

∞∑
k=0

T k.

Since T is quasi-additive on R(T ), we have

T (I + T + T 2 + · · · + Tn) = T + T 2 + · · · + Tn+1.

Hence,

(I − T )An = (I − T )(I + T + T 2 + · · · + Tn) = I − Tn+1

and

An(I − T ) = I − Tn+1

for each n ≥ 1. Letting n → ∞, we obtain A = (I − T )−1. Therefore,

‖(I − T )−1‖ = ‖A‖ ≤ 1
1 − ‖T‖ ,

‖(I − T )−1 − I‖ = ‖A − I‖ ≤ ‖T‖
1 − ‖T‖ .

This finishes the proof. �

Lemma 3.4 Let T ∈ B(X, Y ), δT ∈ B(X, Y ) and T = T + δT . Assume that kerPN(T ) is
a subspace of X, N(T ) is a proximinal subspace of X, R(T ) is a Chebyshev subspace of Y . If
‖TM‖‖δT‖ < 1, R(δT ) ⊂ R(T ) and N(T ) ⊂ N(δT ), then

R(T ) = R(T ), N(T ) = N(T ).

Proof By Theorem 2.13, there exists a unique Moore–Penrose Metric Generalized inverse TM

of T , which is a bounded homogenous operator (see Remark 2.14). Since TTM = πR(T ), we
have

T = T + δT = T (I + TMδT ).

By the assumption that kerPN(T ) is a subspace of X, it follows from Theorem 3.1 that TM is
quasi-additive on R(T ) ⊂ Y . Moreover, R(δT ) ⊂ R(T ), and therefore TMδT is quasi-additive
on R(TMδT ). Noticing that

‖TMδT‖ ≤ ‖TM‖‖δT‖ < 1 and − TMδT ∈ H(X),

by Lemma 3.3, the operator (I − (−TMδT ))−1 exists and (I + TMδT )−1 ∈ H(X). Hence,

T = T (I + TMδT )−1,
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which means that R(T ) ⊂ R(T ). It is obvious that R(T ) ⊂ R(T ). Therefore,

R(T ) = R(T ).

By the assumption that N(T ) ⊂ N(δT ) we easily deduce that N(T ) ⊂ N(T ). Noticing that

‖δTTM‖ ≤ ‖TM‖‖δT‖ < 1 and − δTTM ∈ H(X),

by Lemma 3.3, the operator (I − (−δTTM ))−1 exists and (I + δTTM )−1 ∈ H(X). By TMT =
I − πN(T ), we get

T = T + δT = (I + δTTM )T.

Hence

T = (I + δTTM )−1T .

On the other hand, (I + δTTM )−1 is a homogenous operator, so for any x ∈ N(T ), we have

Tx = (I + δTTM )−1Tx = 0,

which means that x ∈ N(T ). Therefore,

N(T ) = N(T ).

This finishes the proof. �
Now, we are ready to state our result concerning the perturbation of Moore–Penrose metric

generalized inverse TM of T .

Theorem 3.5 Let T ∈ B(X, Y ), δT ∈ B(X, Y ) and T = T + δT . Assume that N(T ) is a
proximinal subspace of X, R(T ) is a Chebyshev subspace of Y . If ‖TM‖‖δT‖ < 1, R(δT ) ⊂
R(T ), N(T ) ⊂ N(δT ), and kerPN(T ) is a subspace of X, then TM and T

M
exist. Moreover,

we have

‖TM − TM‖
‖TM‖

≤ ‖TM‖‖δT‖ ≤ ‖TM‖‖δT‖
1 − ‖TM‖‖δT‖ ,

‖TM‖ ≤ ‖TM‖
1 − ‖TM‖‖δT‖ ,

where ‖TM‖ is the norm of bounded homogenous operator for TM .

Proof It follows from Lemma 3.4 that R(T ) = R(T ), N(T ) = N(T ), and so by Theorem 2.13,
TM and T

M
exist and

D(TM ) = R(T ) � F−1
Y (R(T )⊥), D(T

M
) = R(T ) � F−1

Y (R(T )⊥),

where FY : Y → Y ∗ is the duality mapping of Y .
Since R(T ) and R(T ) are Chebyshev subspaces of Y , by Theorem 2.6,

D(T
M

) = D(TM ) = Y.

Since R(T ) = R(T ), for all b ∈ R(T ) = R(T ) and b �= 0, x = TM b ∈ S(T, b) = {x ∈ X : Tx =
b}, x = T

M
b ∈ S(T , b) = {x ∈ X : Tx = b}. Theorem 2.15 implies that

dist(x, S(T, b)) ≤ ‖TM‖‖δT‖‖x‖. (3.2)
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Noticing that
S(T, b) = TMb + N(T ),

and furthermore that N(T ) is a Chebyshev subspace of X, we obtain that S(T, b) is a Chebyshev
linear manifold in X. Therefore,

dist(x, S(T, b)) = dist(T
M

b, TMb + N(T ))

= ‖TM
b − TMb − πN(T )(T

M
b − TMb)‖, (3.3)

where πN(T ) is a metric project operator from X into N(T ). Since N(T ) is a Chebyshev
subspace of X, by Theorem 2.6, we obtain that

x = πN(T )(x) � C(T ), ∀x ∈ X,

where C(T ) = F−1
X (N(T )⊥). This implies that for all x1 ∈ C(T ), we have πN(T )(x1) = 0.

Indeed, the following relation is clearly true

x1 = 0 + x1, 0 ∈ N(T ), x1 ∈ C(T ).

By Theorem 2.6, we have

x1 = πN(T )(x1) + x2, x2 ∈ C(T ).

Moreover, since the decomposition is unique, we have

πN(T )(x1) = 0.

Since N(T ) = N(T ), then C(T ) = C(T ). Since kerπN(T ) is a linear subspace of X, by

Lemma 2.7, πN(T ) is also a linear operator. Since T
M

b ∈ C(T ) = C(T ) and TMb ∈ C(T ), we
have

πN(T )(T
M

b − TMb) = πN(T )(T
M

b) − πN(T )(TMb) = 0.

By (3.3), there holds

dist(x, S(T, b)) = ‖TM
b − TMb‖.

By (3.2) and ‖x‖ = ‖TM
b‖, we have

‖(TM − TM )b‖ ≤ ‖TM‖‖δT‖‖T M
b‖.

For all y ∈ Y \{0}, there exists a unique b ∈ R(T ) = R(T ) such that

b = πR(T )(y) = πR(T )(y).

It follows from Theorem 2.13 that

T
M

πR(T )(y) = T
M

(y), TMπR(T )(y) = TM (y).

Hence,

‖(TM − TM )y‖ = ‖TM
(y) − TM (y)‖

= ‖TM
πR(T )(y) − TMπR(T )(y)‖

= ‖(TM − TM )b‖
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≤ ‖TM‖‖δT‖‖T M
b‖

= ‖TM‖‖δT‖‖T M
πR(T )(y)‖

= ‖TM‖‖δT‖‖T M
(y)‖

≤ ‖TM‖‖δT‖‖T M‖‖y‖.

Therefore,

sup
‖y‖�=0

‖(TM − TM )y‖
‖y‖ ≤ ‖TM‖‖δT‖|TM‖

and
‖TM − TM‖

‖TM‖
≤ ‖TM‖‖δT‖.

Since ‖TM‖‖δT‖ < 1, we have 0 < 1 − ‖TM‖‖δT‖ < 1 and

‖TM − TM‖
‖TM‖

≤ ‖TM‖‖δT‖
1 − ‖TM‖‖δT‖ .

Moreover,

‖TM
y‖ ≤ ‖TM

y − TMy‖ + ‖TMy‖
= ‖(TM − TM )y‖ + ‖TMy‖
≤ ‖TM‖‖δT‖‖T M

y‖ + ‖TMy‖.

Therefore,

(1 − ‖TM‖‖δT‖)‖TM
y‖ ≤ ‖TMy‖,

which implies that

‖TM
y‖ ≤ ‖TM‖‖y‖

1 − ‖TM‖‖δT‖ ,

or equivalently

‖TM
y‖

‖y‖ ≤ ‖TM‖
1 − ‖TM‖‖δT‖ .

Taking the supremum over y ∈ Y \{0}, we have

‖TM‖ ≤ ‖TM‖
1 − ‖TM‖‖δT‖ ,

and the proof is complete. �
If X and Y are Hilbert spaces, then the Moore–Penrose metric generalized inverses of linear

operators between Banach spaces coincide with the Moore–Penrose generalized inverses under
usual sense since the metric projector is linear orthogonal projector. It is easy to deduce the
following perturbation result from our above result.

Corollary 3.6 Let X and Y be Hilbert spaces, T ∈ B(X, Y ) be with D(T ) = D(T ) = X, and
R(T ) be a closed subspace of Y . Then there exists the Moore–Penrose generalized inverse T+
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of T . If δT ∈ B(X, Y ), ‖T+‖‖δT‖ < 1, T = T + δT , R(δT ) ⊂ R(T ) and N(T ) ⊂ N(δT ), then
the Moore–Penrose generalized inverse T

+
of T exists and

‖T+‖ ≤ ‖T+‖
1 − ‖T+‖‖δT‖ ,

‖T+ − T+‖
‖T+‖

≤ ‖T+‖‖δT‖
1 − ‖T+‖‖δT‖ .

Proof Since T ∈ B(X, Y ) and R(T ) is closed, the Moore–Penrose metric generalized inverse
T+ of T exists. Since ‖T+‖‖δT‖ < 1, R(δT ) ⊂ R(T ) and N(T ) ⊂ N(δT ), there exists the
Moore–Penrose metric generalized inverse T

+
of T . By Theorem 3.5, taking TM = T+ and

T
M

= T
+
, we have

‖T+‖ ≤ ‖T+‖
1 − ‖T+‖‖δT‖

and
‖T+ − T+‖

‖T+‖
≤ ‖T+‖‖δT‖

1 − ‖T+‖‖δT‖ . �

The better result on perturbation of Moore–Penrose generalized inverse in Hilbert space
can be found in [25].

Theorem 3.7 Let T ∈ B(X, Y ) and N(T ) be a proximinal subspace of X, R(T ) be a Cheby-
shev subspace of Y . If kerPN(T ) is a subspace of X and R(T ) is approximatively compact, then
T has a unique and continuous Moore–Penrose metric generalized inverse TM .

Proof By Theorem 3.1, there exists a unique Moore–Penrose metric generalized inverse TM

of T such that
TMy = (ID(T ) − πN(T ))T−πR(T )y, y ∈ Y.

Since R(T ) is an approximatively compact Chebyshev subspace of Y , it follows from Lemma 2.10
that πR(T ) is continuous. Since ID(T ) − πN(T ) and T− are bounded linear operators, the
operator (ID(T ) − πN(T ))T−πR(T ) is continuous. Thus, there exists a unique and continuous
Moore–Penrose metric generalized inverse TM of T . �

Lemma 3.8 Let T, δT ∈ B(X, Y ), and N(T ) be a proximinal subspace of X, R(T ) be a
Chebyshev subspace of Y . Assume that ‖T M‖‖δT‖ < 1, N(T ) ⊂ N(δT ) and R(δT ) ⊂ R(T ). If
kerPN(T ) is a subspace of X, and R(T ) is approximatively compact, then the following results
are true :

(1) (I + δTTM ) : Y → Y is bounded, invertible and

(I + δTTM )−1 =
∞∑

k=0

(−1)k(δTTM )k, (3.4)

where (I + δTTM )−1 ∈ H(Y ).
(2)

∑∞
k=0(−1)k(TMδT )kTM is convergent in H(Y, X) and

∞∑
k=0

(−1)k(TMδT )kTM = TM (I + δTTM )−1. (3.5)

(3) (I + TMδT ) : X → F−1
X (N(T )⊥) is bounded, invertible and

(I + TMδT )−1 =
∞∑

k=0

(−1)k(TMδT )k, (3.6)
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where (I + TMδT )−1 ∈ B(X, X).
(4)

TM (I + δTTM )−1 = (I + TMδT )−1TM . (3.7)

Proof (1) Since N(T ) and R(T ) are Chebyshev subspaces of X and Y , respectively, there
exists a unique Moore–Penrose metric generalized inverse TM of T (TM ∈ H(Y, X)), where
R(T ) is a closed set, D(TM ) = Y and R(TM ) = F−1

X (N(T )⊥). Since ‖TM‖‖δT‖ ≤ r < 1,
δTTM is quasi-additive on R(δTTM ) ⊂ R(T ), it follows from Lemma 3.3 that (I + δTTM ) is
invertible and

(I + δTTM )−1 =
∞∑

k=0

(−1)k(δTTM )k,

where (I + δTTM )−1 ∈ H(Y ).
(2) Since ‖TM‖‖δT‖ ≤ r < 1, by Corollary 3.2, we have TMδT ∈ L(X) and

‖(−1)k(TMδT )kTM‖ = ‖(−1)kTM (δTTM )k‖
≤ ‖TM‖‖δTTM‖k

≤ ‖TM‖ rk

for all k = 0, 1, 2, . . . . Hence, the series
∑∞

k=0(−1)k(TMδT )kTM is absolutely convergent in
H(Y, X). Since kerPN(T ) is a subspace of X and R(T ) is approximatively compact, it follows
from Theorem 3.7 that TM is continuous. By Theorem 3.1, TM is quasi-additive on R(T ).
Hence, by R(δT ) ⊂ R(T ), we deduce that

TM (I + δTTM )−1 = TM
∞∑

k=0

(−1)k(δTTM )k

=
∞∑

k=0

TM (−1)k(δTTM )k

= lim
k→∞

[TM − TMδTTM + · · · + (−1)kTM (δTTM )k]

=
∞∑

k=0

(−1)k(TMδT )kTM .

(3) It is obvious that
∑∞

k=0(−1)k(TMδT )k is a bounded operator acting from X to
F−1

X (N(T )⊥). We claim that

(I + TMδT )−1 =
∞∑

k=0

(−1)k(TMδT )k.

Indeed, taking arbitrary x ∈ X, we have

x = (I − TMT )x + TMTx.

Since N(T ) ⊂ N(δT ), thus δT (I − TMT ) = 0. It follows from Corollary 3.2 that TMδT is
a bounded linear operator. Hence, by equalities (3.4), (3.5) and the inclusion N(T ) ⊂ N(δT ),
we obtain

[ ∞∑
k=0

(−1)k(TMδT )k

]
(I + TMδT )x
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=
∞∑

k=0

(−1)k(TMδT )k(I − TMT )x +
[ ∞∑

k=0

(−1)k(TMδT )k

]
(I + TMδT )TMTx

= (I − TMT )x +
[ ∞∑

k=0

(−1)k(TMδT )k

]
TM (I + δTTM )Tx

= (I − TMT )x + TM

[ ∞∑
k=0

(−1)k(δTTM )k

]
(I + δTTM )Tx

= (I − TMT )x + TM (I + δTTM )−1(I + δTTM )Tx

= x.

We have also

x = (I − TMT )x + TMTx, x ∈ F−1
X (N(T )⊥) = R(TM ).

Since δT (I − TMT ) = 0, TM is continuous and quasi-additive on R(T ), we have

(I + TMδT )
[ ∞∑

k=0

(−1)k(TMδT )k

]
x

= (I + TMδT )
[
x +

∞∑
k=1

(−1)k(TMδT )kTMTx

]

= (I + TMδT )
[
x + TM

∞∑
k=1

(−1)k(δTTM )kTx

]

= (I + TMδT )[x + TM ((I + δTTM )−1Tx − Tx)]

= (I + TMδT )[x + TM (I + δTTM )−1Tx − TMTx]

= (I + TMδT )x + (I + TMδT )TM (I + δTTM )−1Tx − (I + TMδT )TMTx

= (I + TMδT )x + TM (I + δTTM )(I + δTTM )−1Tx − (I + TMδT )TMTx

= (I + TMδT )x + TMTx − (I + TMδT )TMTx

= x + TMδT (I − TMT )x

= x

by (3.4) and (3.5). Therefore,

(I + TMδT )−1 =
∞∑

k=0

(−1)k(TMδT )k ∈ B(X).

The last statement (4) follows easily from (3.4)–(3.6), and the proof is complete. �

Theorem 3.9 Let T ∈ B(X, Y ), δT ∈ B(X, Y ), and T = T + δT . Assume that N(T ) is a
proximinal subspace of X, R(T ) is a Chebyshev subspace of Y , ‖TM‖‖δT‖ < 1, N(T ) ⊂ N(δT )
and R(δT ) ⊂ R(T ). If kerPN(T ) is a subspace of X and R(T ) is approximatively compact, then

(1) N(T ) = N(T ), R(T ) = R(T );
(2) T

M
= TM (I + δTTM )−1 = (I + TMδT )−1TM ;

(3) ‖TM‖ ≤ ‖T M‖
1−‖δTT M‖ ;

(4) ‖TM − TM‖ ≤ ‖T M‖‖δTT M‖
1−‖δTT M‖ .
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Proof (1) By Lemma 3.4, we have N(T ) = N(T ), R(T ) = R(T ).
(2) Since N(T ) and N(T ) are Chebyshev subspaces of X, R(T ) and R(T ) are Chebyshev

subspaces of Y , thus TM and T
M

exist. It follows from Lemma 3.8 that the operator (I +
δTTM ) is invertible and

(I + δTTM )−1 =
∞∑

k=0

(−1)k(δTTM )k,

where (I + δTTM )−1 ∈ H(Y ). Denoting T# := TM (I + δTTM )−1 ∈ H(Y, X), we claim that
T# = TM (I + δTTM )−1 is the Moore–Penrose metric generalized inverse of T and

T
M

= TM (I + δTTM )−1 = (I + TMδT )−1TM .

Indeed,
(i) Since N(T ) ⊂ N(δT ), then δT (I − TMT ) = 0. Hence,

T − TT#T = [I − TTM (I + δTTM )−1]T

= [I − (T + δT )TM (I + δTTM )−1](T + δT )

= [(I + δTTM ) − (T + δT )TM ](I + δTTM )−1(T + δT )

= (I − TTM )(I + δTTM )−1(T + δT )

= (I − TTM )(I + δTTM )−1(T + δTTMT + δT − δTTMT )

= (I − TTM )(I + δTTM )−1[(I + δTTM )T + δT (I − TMT )]

= (I − TTM )(I + δTTM )−1(I + δTTM )T = 0,

i.e.,
T = TT#T , on X.

(ii) It follows from (3.7) that

TM (I + δTTM )−1 = (I + TMδT )−1TM .

TM is quasi-additive on R(T ), which implies that TM (TTM − I) = 0 and

T#TT# − T# = TM (I + δTTM )−1TTM (I + δTTM )−1 − TM (I + δTTM )−1

= (I + TMδT )−1TMTTM (I + δTTM )−1 − (I + TMδT )−1TM .

Furthermore, R(δT ) ⊂ R(T ). Thus, (I + TMδT ) is a linear operator such that

T#TT# − T# = (I + TMδT )−1TM [(T + δT )TM (I + δTTM )−1 − I]

= (I + TMδT )−1TM [TTM + δTTM − I − δTTM ](I + δTTM )−1

= (I + TMδT )−1TM (TTM − I)(I + δTTM )−1

= 0,

which means that T#TT# = T# on Y .
(iii) Noticing that N(T ) ⊂ N(δT ), we have N(T ) = N(T ) and δT = δTTMT . Since

TMT = I − πN(T ), we deduce that

T = T + δT = (I + δTTM )T.
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Hence,

T#T = TM (I + δTTM )−1(I + δTTM )T

= TMT = I − πN(T ) = I − πN(T ).

(iv) It follows from the inclusion R(δT ) ⊂ R(T ) that R(T ) = R(T ). Hence, δT = TTMδT .
Since TTM = πR(T ), we have

T = T + δT = T (I + TMδT ),

and

TT# = T (I + TMδT )(I + TMδT )−1TM

= TTM = πR(T ) = πR(T ).

Therefore, T# = TM (I + δTTM )−1 is the Moore–Penrose metric generalized inverse of T , and

T
M

= TM (I + δTTM )−1 = (I + TMδT )−1TM .

Therefore, we have shown that (2) is valid.
(3) Lemma 3.3 shows that

‖TM‖ = ‖TM (I + δTTM )−1‖ ≤ ‖TM‖‖(I + δTTM )−1‖

≤ ‖TM‖
1 − ‖δTTM‖ .

(4) Lemma 3.3 assures that

‖T M − TM‖ = ‖(I + TMδT )−1TM − TM‖
= ‖((I + TMδT )−1 − I)TM‖
≤ ‖(I + TMδT )−1 − I‖‖TM‖

≤ ‖TMδT‖‖TM‖
1 − ‖TMδT‖ . �

Theorem 3.10 Let T and δT belong to B(X, Y ) and T = T + δT . Assume that N(T ) is a
proximinal subspace of X, R(T ) is a Chebyshev subspace of Y , ‖TM‖‖δT‖ < 1, N(T ) ⊂ N(δT )
and R(δT ) ⊂ R(T ). If kerPN(T ) is a subspace of X, R(T ) is approximatively compact and
y := y + δy ∈ R(T ) for all y, δy ∈ R(T ), then

‖x − x‖
‖x‖ ≤ κ

1 − κεT

(
εy

‖y‖
‖T‖‖x‖ + εT

)
,

where κ = ‖T‖‖TM‖, εT = ‖δT‖/‖T‖, εy = ‖δy‖/‖y‖, x = T
M

y and x = TMy.

Proof Noticing that T
M

is linear on R(T ) = R(T ), it follows from Theorem 3.9 and Lemma 3.3
that

‖x − x‖ = ‖T M
y − TMy‖

= ‖T M
δy + (T

M − TM )y‖
= ‖T M

δy +
[
(I + TMδT )−1 − I

]
TMy‖

≤ ‖T M‖‖δy‖ + ‖(I + TMδT )−1 − I‖‖TMy‖
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≤ ‖TM‖
1 − ‖TM‖‖δT‖‖δy‖ +

‖TM‖‖δT‖‖x‖
1 − ‖TM‖‖δT‖

=
‖TM‖‖T‖

1 − ‖TM‖‖δT‖
‖δy‖
‖y‖

‖y‖
‖T‖ +

‖TM‖‖T‖‖x‖
1 − ‖TM‖‖δT‖

‖δT‖
‖T‖

=
κ

1 − κεT

(
εy

‖y‖
‖T‖ + εT ‖x‖

)
,

which finished the proof. �

Corollary 3.11 If T satisfies the assumptions of Theorem 3.10 and T is surjective, then

‖x − x‖
‖x‖ ≤ κ

1 − κεT
(εy + εT ) ,

where κ = ‖T‖‖TM‖, εT = ‖δT‖/‖T‖, εy = ‖δy‖/‖y‖.
Proof Since T is surjective, for any y ∈ Y , there exists x such that Tx = y, i.e., y − Tx = 0,
and ‖y‖ ≤ ‖T‖‖x‖. Thus by the proof of Theorem 3.10, we have

‖x − x‖ ≤ κ

1 − κεT

(
εy

‖y‖
‖T‖ + εT ‖x‖

)

≤ κ

1 − κεT
(εy + εT ) ‖x‖,

which finished the proof. �
When T has linearly generalized inverse T+, Corollary 3.11 is Proposition 4.2 of [4].
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